const UINT8_BLOCK = 16 const Sbox = Uint8Array.from([ 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05, 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62, 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6, 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8, 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87, 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e, 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1, 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3, 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f, 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8, 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0, 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84, 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 ]) const CK = Uint32Array.from([ 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269, 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299, 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279 ]) const FK = Uint32Array.from([ 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc ]) const Crypt = { /** * Converts a JS string to an UTF-8 uint8array. * * @static * @param {String} str 16-bit unicode string. * @return {Uint8Array} UTF-8 Uint8Array. * @memberof Crypt */ stringToArrayBufferInUtf8 (str) { // always utf-8 const encoder = new TextEncoder() return encoder.encode(str) }, /** * Converts an UTF-8 uint8array to a JS string. * * @static * @param {Uint8Array} strBuffer UTF-8 Uint8Array. * @return {String} 16-bit unicode string. * @memberof Crypt */ utf8ArrayBufferToString (strBuffer) { const decoder = new TextDecoder('utf-8') return decoder.decode(strBuffer) } } export default class SM4 { /** * Creates an instance of SM4. * @param {Object} config * @memberof SM4 */ constructor (config) { const keyBuffer = typeof config.key === 'string' ? Crypt.stringToArrayBufferInUtf8(config.key) : Uint8Array.from(config.key) if (keyBuffer.length !== 16) { throw new Error('key should be a 16 bytes string') } /** * key should be 16 bytes string * @member {Uint8Array} key */ this.key = keyBuffer /** * iv also should be 16 bytes string * @member {Uint8Array} iv */ let ivBuffer = new Uint8Array(0) if (config.iv !== undefined && config.iv !== null) { // need iv ivBuffer = Crypt.stringToArrayBufferInUtf8(config.iv) if (ivBuffer.length !== 16) { throw new Error('iv should be a 16 bytes string') } } this.iv = ivBuffer /** * sm4's encrypt mode * @member {Enum} mode */ this.mode = 'ecb' if (['cbc', 'ecb'].includes(config.mode)) { // set encrypt mode. default is ecb this.mode = config.mode } /** * sm4's cipher data type * @member {Enum} outType */ this.cipherType = 'uint8array' if (['uint8array', 'text'].includes(config.outType)) { // set data type. default is uint8array this.cipherType = config.outType } /** * sm4's encrypt round key array * @member {Uint32Array} encryptRoundKeys */ this.encryptRoundKeys = new Uint32Array(32) // spawn 32 round keys this.spawnEncryptRoundKeys() /** * sm4's decrypt round key array * @member {Uint32Array} encryptRoundKeys */ this.decryptRoundKeys = Uint32Array.from(this.encryptRoundKeys) this.decryptRoundKeys.reverse() } /** * general sm4 encrypt/decrypt algorithm for a 16 bytes block using roundKey * * @param {Uint32Array} blockData * @param {Uint32Array} roundKeys * @return {Uint32Array} return a 16 bytes cipher block * @memberof SM4 */ doBlockCrypt (blockData, roundKeys) { const xBlock = new Uint32Array(36) xBlock.set(blockData, 0) // loop to process 32 rounds crypt for (let i = 0; i < 32; i++) { xBlock[i + 4] = xBlock[i] ^ this.tTransform1(xBlock[i + 1] ^ xBlock[i + 2] ^ xBlock[i + 3] ^ roundKeys[i]) } const yBlock = new Uint32Array(4) // reverse last 4 xBlock member yBlock[0] = xBlock[35] yBlock[1] = xBlock[34] yBlock[2] = xBlock[33] yBlock[3] = xBlock[32] return yBlock } /** * spawn round key array for encrypt. reverse this key array when decrypt. * every round key's length is 32 bytes. * there are 32 round keys. * @return {Uint32Array} * @memberof SM4 */ spawnEncryptRoundKeys () { // extract mk in key const mk = new Uint32Array(4) mk[0] = this.key[0] << 24 | this.key[1] << 16 | this.key[2] << 8 | this.key[3] mk[1] = this.key[4] << 24 | this.key[5] << 16 | this.key[6] << 8 | this.key[7] mk[2] = this.key[8] << 24 | this.key[9] << 16 | this.key[10] << 8 | this.key[11] mk[3] = this.key[12] << 24 | this.key[13] << 16 | this.key[14] << 8 | this.key[15] // calculate the K array const k = new Uint32Array(36) k[0] = mk[0] ^ FK[0] k[1] = mk[1] ^ FK[1] k[2] = mk[2] ^ FK[2] k[3] = mk[3] ^ FK[3] // loop to spawn 32 round keys for (let i = 0; i < 32; i++) { k[i + 4] = k[i] ^ this.tTransform2(k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ CK[i]) this.encryptRoundKeys[i] = k[i + 4] } } /** * left rotate x by y bits * * @param {*} x * @param {Number} y * @returns * @memberof SM4 */ rotateLeft (x, y) { return x << y | x >>> (32 - y) } /** * L transform function for encrypt * * @param {Uint32Number} b * @returns {Uint32Number} * @memberof SM4 */ linearTransform1 (b) { return b ^ this.rotateLeft(b, 2) ^ this.rotateLeft(b, 10) ^ this.rotateLeft(b, 18) ^ this.rotateLeft(b, 24) } /** * L' transform function for key expand * * @param {Uint32Number} b * @returns {Uint32Number} * @memberof SM4 */ linearTransform2 (b) { return b ^ this.rotateLeft(b, 13) ^ this.rotateLeft(b, 23) } /** * τ transform function * * @param {Uint32Number} a * @returns {Uint32Number} * @memberof SM4 */ tauTransform (a) { return Sbox[a >>> 24 & 0xff] << 24 | Sbox[a >>> 16 & 0xff] << 16 | Sbox[a >>> 8 & 0xff] << 8 | Sbox[a & 0xff] } /** * mix replacement T transform for encrypt * * @param {Uint32Number} z * @returns {Uint32Number} * @memberof SM4 */ tTransform1 (z) { const b = this.tauTransform(z) const c = this.linearTransform1(b) return c } /** * mix replacement T transform for key expand * * @param {Uint32Number} z * @returns {Uint32Number} * @memberof SM4 */ tTransform2 (z) { const b = this.tauTransform(z) const c = this.linearTransform2(b) return c } /** * padding the array length to multiple of BLOCK * * @param {ByteArray} originalBuffer * @returns {ByteArray} * @memberof SM4 */ padding (originalBuffer) { if (originalBuffer === null) { return null } const paddingLength = UINT8_BLOCK - originalBuffer.length % UINT8_BLOCK const paddedBuffer = new Uint8Array(originalBuffer.length + paddingLength) paddedBuffer.set(originalBuffer, 0) paddedBuffer.fill(paddingLength, originalBuffer.length) return paddedBuffer } /** * depadding the byte array to its original length * * @param {ByteArray} paddedBuffer * @returns {ByteArray} * @memberof SM4 */ dePadding (paddedBuffer) { if (paddedBuffer === null) { return null } const paddingLength = paddedBuffer[paddedBuffer.length - 1] const originalBuffer = paddedBuffer.slice(0, paddedBuffer.length - paddingLength) return originalBuffer } /** * exctract uint32 array block from uint8 array * * @param {Uint8Array} uint8Array * @param {Number} baseIndex * @returns {Uint32Array} * @memberof SM4 */ uint8ToUint32Block (uint8Array, baseIndex = 0) { const block = new Uint32Array(4)// make Uint8Array to Uint32Array block block[0] = uint8Array[baseIndex] << 24 | uint8Array[baseIndex + 1] << 16 | uint8Array[baseIndex + 2] << 8 | uint8Array[baseIndex + 3] block[1] = uint8Array[baseIndex + 4] << 24 | uint8Array[baseIndex + 5] << 16 | uint8Array[baseIndex + 6] << 8 | uint8Array[baseIndex + 7] block[2] = uint8Array[baseIndex + 8] << 24 | uint8Array[baseIndex + 9] << 16 | uint8Array[baseIndex + 10] << 8 | uint8Array[baseIndex + 11] block[3] = uint8Array[baseIndex + 12] << 24 | uint8Array[baseIndex + 13] << 16 | uint8Array[baseIndex + 14] << 8 | uint8Array[baseIndex + 15] return block } /** * encrypt the string plaintext * * @param {String} plaintext * @memberof SM4 * @return {Unit8Array|String} cipherByteArray */ encrypt (plaintext) { const plainByteArray = Crypt.stringToArrayBufferInUtf8(plaintext) const padded = this.padding(plainByteArray) const blockTimes = padded.length / UINT8_BLOCK const outArray = new Uint8Array(padded.length) if (this.mode === 'cbc') { // CBC mode if (this.iv === null || this.iv.length !== 16) { throw new Error('iv error') } // init chain with iv (transform to uint32 block) let chainBlock = this.uint8ToUint32Block(this.iv) for (let i = 0; i < blockTimes; i++) { // extract the 16 bytes block data for this round to encrypt const roundIndex = i * UINT8_BLOCK const block = this.uint8ToUint32Block(padded, roundIndex) // xor the chain block chainBlock[0] = chainBlock[0] ^ block[0] chainBlock[1] = chainBlock[1] ^ block[1] chainBlock[2] = chainBlock[2] ^ block[2] chainBlock[3] = chainBlock[3] ^ block[3] // use chain block to crypt const cipherBlock = this.doBlockCrypt(chainBlock, this.encryptRoundKeys) // make the cipher block be part of next chain block chainBlock = cipherBlock for (let l = 0; l < UINT8_BLOCK; l++) { outArray[roundIndex + l] = cipherBlock[parseInt(l / 4)] >> ((3 - l) % 4 * 8) & 0xff } } } else { // this will be ECB mode for (let i = 0; i < blockTimes; i++) { // extract the 16 bytes block data for this round to encrypt const roundIndex = i * UINT8_BLOCK const block = this.uint8ToUint32Block(padded, roundIndex) const cipherBlock = this.doBlockCrypt(block, this.encryptRoundKeys) for (let l = 0; l < UINT8_BLOCK; l++) { outArray[roundIndex + l] = cipherBlock[parseInt(l / 4)] >> ((3 - l) % 4 * 8) & 0xff } } } if (this.cipherType === 'text') { return Crypt.utf8ArrayBufferToString(outArray) } return outArray } /** * decrypt the Unit8Array cipherByteArray * * @param {String|Unit8Array} cipherByteArray * @memberof SM4 */ decrypt (cipherObj) { let cipherByteArray if (typeof cipherObj === 'string') { cipherByteArray = Crypt.stringToArrayBufferInUtf8(cipherObj) } else { cipherByteArray = cipherObj } const blockTimes = cipherByteArray.length / UINT8_BLOCK const outArray = new Uint8Array(cipherByteArray.length) // decrypt the cipherByteArray by block if (this.mode === 'cbc') { // todo CBC mode if (this.iv === null || this.iv.length !== 16) { throw new Error('iv error') } // init chain with iv (transform to uint32 block) let chainBlock = this.uint8ToUint32Block(this.iv) for (let i = 0; i < blockTimes; i++) { // extract the 16 bytes block data for this round to encrypt const roundIndex = i * UINT8_BLOCK // make Uint8Array to Uint32Array block const block = this.uint8ToUint32Block(cipherByteArray, roundIndex) // reverse the round keys to decrypt const plainBlockBeforeXor = this.doBlockCrypt(block, this.decryptRoundKeys) // xor the chain block const plainBlock = new Uint32Array(4) plainBlock[0] = chainBlock[0] ^ plainBlockBeforeXor[0] plainBlock[1] = chainBlock[1] ^ plainBlockBeforeXor[1] plainBlock[2] = chainBlock[2] ^ plainBlockBeforeXor[2] plainBlock[3] = chainBlock[3] ^ plainBlockBeforeXor[3] // make the cipher block be part of next chain block chainBlock = block for (let l = 0; l < UINT8_BLOCK; l++) { outArray[roundIndex + l] = plainBlock[parseInt(l / 4)] >> ((3 - l) % 4 * 8) & 0xff } } } else { // ECB mode for (let i = 0; i < blockTimes; i++) { // extract the 16 bytes block data for this round to encrypt const roundIndex = i * UINT8_BLOCK // make Uint8Array to Uint32Array block const block = this.uint8ToUint32Block(cipherByteArray, roundIndex) // reverse the round keys to decrypt const plainBlock = this.doBlockCrypt(block, this.decryptRoundKeys) for (let l = 0; l < UINT8_BLOCK; l++) { outArray[roundIndex + l] = plainBlock[parseInt(l / 4)] >> ((3 - l) % 4 * 8) & 0xff } } } // depadding the decrypted data const depaddedPlaintext = this.dePadding(outArray) // transform data to utf8 string return Crypt.utf8ArrayBufferToString(depaddedPlaintext) } }